
N88-23234

ADAPTING HIGH-LEVEL LANGUAGE PROGRAMS FOR PARALLEL
PROCESSING USING DATA FLOW

Hilda M. Standley
Department of Computer Science and Engineering

Toledo, Ohio

ABSTRACT

EASY-FLOW, a very high-level data flow language, is introduced for the purpose
of adapting programs written in a conventional high-level language to a parallel
environment. The level of parallelism provided is of the large-grained variety in which
parallel activities take place between subprograms or processes. A program written in
EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching,
and distribution constructs. A data flow graph may be deduced from an EASY-FLOW
program. All permissible schedulings of executions within the graph are dictated by the
data dependencies between units.

NASA Lewis Research Center Grant # NAG 3-699.
Technical Monitor: L. J. Kiraly

1-103



SOFTWARETO FACILITATE PARALLELISM

Parallel software technology continues to lag behind parallel hardware
technology. Synchronization and communication problems have been solved at the
hardware level to the degree to enable several multiprocessor systems to be offered
commercially. Software is required to provide for the efficient utilization of these
multiprocessor systems. Three areas must be addressed in a parallel software solution:
(1) the determination of potential parallelism, (2) partitioning the programs into processes
or tasks, each of which may be assigned to a single processor, and (3) scheduling the
program partitions to execute in a cooperative fashion.

(1) DETERMINE POTENTIAL

PARALLELISM

(2) PARTITION A PROGRAM

(3) SCHEDULE PROGRAM PARTITIONS

i-i04



DATA FLOW

The data flow schema of parallel computation (Agerwala, 1982) offers at the
same time a model of software and hardware. Data values flow between nodes
representing operations in a data flow graph. Data flowing into operations serve as
operands. Input data values are consumed by an operation and result values output and
directed to other operations for which they serve as operands. Execution is completely
data driven. The presence,of all data, values required as operands triggers the execution
of an operation. A single operation may be low-level (for example, an addition) or
high-level (for example, the execution of a subprogram) (Babb, 1984).

P "= (Q + R) * (Z- W)

Q R Z W

1-105



LANGUAGE DESIGN PROJECT GOALS

The language design project, resulting in EASY-FLOW (Standley, 1987), has
three goals: to develop a language (1) to expose potential parallelism both implicitly and
explicitly, at the large-grained level or below (referred to as "variable resolution"), (2) to
provide for the continued use of the magnitude of software in existence with only minor
modifications, and (3) to require very little retraining of conventional language

programmers.

TO EXPOSE PARALLELISM

TO USE CURRENT SOFTWARE WITH

ONLY MINOR

MODIFICATIONS

TO NECESSITATE VERY LITTLE

RETRAINING OF

CONVENTIONAL LANGUAGE

PROGRAMMERS

!-106



STRUCTURING UNITS WITHIN AN EASY-FLOW PROGRAM

An EASY-FLOW program is specified as a hierarchy of units. Each unit consists
of a substructure of units, a reference to an external unit, or it is atomic. An atomic unit
is a call to a subprogram expressed in a conventional, high-level language such as
FORTRAN or C.

Constructs in the EASY-FLOW language are used to specify the subunits (if any)
in a unit and the relationships between them. Lists of "input values" and "output values"
associated with each unit may be used to determine the data dependencies between units
and can consequently be used in establishing the proper scheduling of unit executions.

EASY-FLOW offers the minimal set of language constructs required for the flow
of control: sequencing (SUBPROGRAM call), branching (IF-THEN-ELSE), and looping
(ITER for iteration). One additional construct, DISTRIBUTE, provides an explicit
notation for parallelism.

- SUBPROGRAM CALL

- IF-THEN-ELSE

- ITER

- DISTRIBUTE

1-107



THE EASY-FLOW PROGRAM

The language constructs provide a framework within which one or more units
may be placed. Multiple units appearing within a structure are termed a "unit set." Each
unit is enclosed within an input list and an output list pair, stating the names of the data
values required as "operands" and produced as results, respectively. A data flow graph
may be constructed by the EASY-FLOW language processor from the data dependencies
determined by these input/output pairs.

MAIN PROGRAM:

DECLARATIONS:

UNIT

ENDUNIT

UNIT

IF

THEN

ELSE

ENDUNIT

UNIT

ENDUNIT

1-1._08



EXAMPLE PROGRAM, MAXTWO

The example program, MAXTWO, calculates the maximum of the values of the
two functions, f and g, at a point X. Four names for data values are declared having type
"real." The program consists of one unit, called MAIN, with one input value, X, and one
output value, RESULT. The body of the MAIN unit is a unit set consisting of three units,
each having a call to a subprogram as its body, for calculating functions f(X), g(X), and
max(f(X),g(X)). These three units may appear in any order. Three subprograms F, G,
and MAX (assumed to be written in a conventional language) must be supplied in order
to complete the program.

MAXTWO:

declare: real X,FX,GX,RESULT
unit MAIN:

input: X
unit CALCF:

into: X => X

subprogram F(X,FX)
outof:FX => FX

endunit CALCF

unit CALCG:

into: X => X

subprogram G(X,GX)
outof:GX => GX

endunit CALCG

unit FINDMAX:

into: FX => FX

GX => GX

subprogram MAX(FX,GX,

RESULT)
outof:RESULT=>RESULT

endunit FINDMAX

output: RESULT
endunit MAIN

1-109



THE EASY-FLOW LANGUAGE PROCESSOR

The EASY-FLOW language processing system constructs a data flow graph from
the program and partitions and assigns code for execution based upon the nature of the
target machine. If the target machine is a uniprocessor, a topological sort on the nodes in
the data flow graph determines an appropriate, although not necessarily unique, unit
execution sequence. For a multiprocessor system, the partitioning and assignment may
be directed by the data flow graph. The language processing system must also provide
for the "sanitizing" of the traditional language subprograms, removing references to
global variables, for example.

EASY-FLOW LANGUAGE PROCESSOR

- CONSTRUCTS DATA-FLOW GRAPH

PARTITIONS AND ALLOCATES UNIT

EXECUTION BASED UPON TARGET

ARCHITECTURE

"SANITIZES" TRADITIONAL LANGUAGE

SUBPROGRAMS

l-!to



BIBLIOGRAPHY

Agerwala, T., and Arvind, 1982, "Data Flow Systems--Guest Editors'
Introduction," computer Vol. 15, No. 2, pp. 10-13.

Babb II, R., 1984, "Parallel Processing with Large-Grained Data Flow

Techniques," Computer, Vol. 17, No. 7, pp. 55-61.

Standley, H., 1987, "A Very High Level Language for Large-Grained Data
Flow," 1987 ACM Computer Science Conference Proceedings, St. Louis, Mo.

i-IIi




